Inductive reasoning is a core component of human intelligence. In the past research of inductive reasoning within computer science, logic language is used as representations of knowledge (facts and rules, more specifically). However, logic language can cause systematic problems for inductive reasoning such as disability of handling raw input such as natural language, sensitiveness to mislabeled data, and incapacity to handle ambiguous input. To this end, we propose a new task, which is to induce natural language rules from natural language facts, and create a dataset termed DEER containing 1.2k rule-fact pairs for the task, where rules and facts are written in natural language. New automatic metrics are also proposed and analysed for the evaluation of this task. With DEER, we investigate a modern approach for inductive reasoning where we use natural language as representation for knowledge instead of logic language and use pretrained language models as ''reasoners''. Moreover, we provide the first and comprehensive analysis of how well pretrained language models can induce natural language rules from natural language facts. We also propose a new framework drawing insights from philosophy literature for this task, which we show in the experiment section that surpasses baselines in both automatic and human evaluations.
translated by 谷歌翻译
Twitter上的自动抑郁症检测可以帮助个人在早期阶段私下方便地了解其心理健康状况,然后再见心理健康专业人员。大多数现有的黑盒样深度学习方法用于抑郁症检测主要集中在改善分类性能上。但是,在健康研究中解释模型决策至关重要,因为决策通常可以是高风险和死亡。可靠的自动诊断精神健康问题在内的抑郁症应得到可靠的解释,以证明模型的预测是合理的。在这项工作中,我们提出了一个新颖的可解释模型,用于在Twitter上检测抑郁症。它包括一个新颖的编码器,结合了分层注意机制和前馈神经网络。为了支持心理语言学研究,我们的模型利用隐喻概念映射作为输入。因此,它不仅检测到沮丧的人,还可以确定此类用户推文和相关隐喻概念映射的功能。
translated by 谷歌翻译
ICML表达性发声(EXVO)的竞争重点是理解和产生声音爆发:笑声,喘息,哭泣和其他非语言发声,这是情感表达和交流至关重要的。 EXVO 2022,包括三个竞赛曲目,使用来自1,702位扬声器的59,201个发声的大规模数据集。首先是Exvo-Multitask,要求参与者训练多任务模型,以识别声音爆发中表达的情绪和人口特征。第二个,即exvo生成,要求参与者训练一种生成模型,该模型产生声音爆发,传达了十种不同的情绪。第三个exvo-fewshot要求参与者利用少量的学习融合说话者身份来训练模型,以识别声音爆发传达的10种情感。本文描述了这三个曲目,并使用最先进的机器学习策略为基线模型提供了绩效指标。每个曲目的基线如下,对于exvo-multitask,一个组合得分,计算一致性相关系数的谐波平均值(CCC),未加权的平均召回(UAR)和反向平均绝对错误(MAE)(MAE)($ s_ {mtl) } $)充其量是0.335 $ s_ {mtl} $;对于exvo生成,我们报告了Fr \'Echet Inception距离(FID)的得分范围为4.81至8.27(取决于情绪),在训练集和生成的样品之间。然后,我们将倒置的FID与生成样品的感知评级($ s_ {gen} $)相结合,并获得0.174 $ s_ {gen} $;对于Exvo-Fewshot,获得平均CCC为0.444。
translated by 谷歌翻译
人类编码人员将标准化的医疗法规分配给患者住院期间产生的临床文件,该文件容易出错且劳动力密集。使用机器学习方法(例如深神经网络)开发了自动化的医学编码方法。然而,由于冗长的文档中的班级问题,复杂的代码关联和噪音,自动化的医疗编码仍然具有挑战性。为了解决这些问题,我们提出了一个新型的神经网络,称为多任务和重新校准的神经网络。值得注意的是,多任务学习方案共享不同代码分支之间的关系知识以捕获代码关联。重新校准的聚合模块是通过级联卷积块来提取高级语义特征来开发的,从而减轻噪声在文档中的影响。同样,重新校准的模块的级联结构可以从冗长的音符中受益。为了解决类不平衡的问题,我们部署了焦点损失,以重新分布低频和高频医疗法规的注意力。实验结果表明,我们提出的模型在现实世界中的临床数据集模拟于III上优于竞争基线。
translated by 谷歌翻译
随着人格计算的出现作为与人工智能和人格心理有关的新研究领域,我们目睹了一个前所未有的人格意识推荐系统的扩散。与传统推荐系统不同,这些新系统解决了传统问题,如冷启动和数据稀疏问题。该调查旨在研究和系统地分类人格意识推荐系统。据我们所知,这项调查是第一个重点关注人格意识推荐系统。通过比较其个性建模方法以及其推荐技术,我们探索了人格感知推荐系统的不同设计选择。此外,我们介绍了常用的数据集,并指出了人格感知推荐系统的一些挑战。
translated by 谷歌翻译
There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/ .
translated by 谷歌翻译
Logic Mill is a scalable and openly accessible software system that identifies semantically similar documents within either one domain-specific corpus or multi-domain corpora. It uses advanced Natural Language Processing (NLP) techniques to generate numerical representations of documents. Currently it leverages a large pre-trained language model to generate these document representations. The system focuses on scientific publications and patent documents and contains more than 200 million documents. It is easily accessible via a simple Application Programming Interface (API) or via a web interface. Moreover, it is continuously being updated and can be extended to text corpora from other domains. We see this system as a general-purpose tool for future research applications in the social sciences and other domains.
translated by 谷歌翻译
In this paper we take the first steps in studying a new approach to synthesis of efficient communication schemes in multi-agent systems, trained via reinforcement learning. We combine symbolic methods with machine learning, in what is referred to as a neuro-symbolic system. The agents are not restricted to only use initial primitives: reinforcement learning is interleaved with steps to extend the current language with novel higher-level concepts, allowing generalisation and more informative communication via shorter messages. We demonstrate that this approach allow agents to converge more quickly on a small collaborative construction task.
translated by 谷歌翻译
High content imaging assays can capture rich phenotypic response data for large sets of compound treatments, aiding in the characterization and discovery of novel drugs. However, extracting representative features from high content images that can capture subtle nuances in phenotypes remains challenging. The lack of high-quality labels makes it difficult to achieve satisfactory results with supervised deep learning. Self-Supervised learning methods, which learn from automatically generated labels has shown great success on natural images, offer an attractive alternative also to microscopy images. However, we find that self-supervised learning techniques underperform on high content imaging assays. One challenge is the undesirable domain shifts present in the data known as batch effects, which may be caused by biological noise or uncontrolled experimental conditions. To this end, we introduce Cross-Domain Consistency Learning (CDCL), a novel approach that is able to learn in the presence of batch effects. CDCL enforces the learning of biological similarities while disregarding undesirable batch-specific signals, which leads to more useful and versatile representations. These features are organised according to their morphological changes and are more useful for downstream tasks - such as distinguishing treatments and mode of action.
translated by 谷歌翻译
Objective: Imbalances of the electrolyte concentration levels in the body can lead to catastrophic consequences, but accurate and accessible measurements could improve patient outcomes. While blood tests provide accurate measurements, they are invasive and the laboratory analysis can be slow or inaccessible. In contrast, an electrocardiogram (ECG) is a widely adopted tool which is quick and simple to acquire. However, the problem of estimating continuous electrolyte concentrations directly from ECGs is not well-studied. We therefore investigate if regression methods can be used for accurate ECG-based prediction of electrolyte concentrations. Methods: We explore the use of deep neural networks (DNNs) for this task. We analyze the regression performance across four electrolytes, utilizing a novel dataset containing over 290000 ECGs. For improved understanding, we also study the full spectrum from continuous predictions to binary classification of extreme concentration levels. To enhance clinical usefulness, we finally extend to a probabilistic regression approach and evaluate different uncertainty estimates. Results: We find that the performance varies significantly between different electrolytes, which is clinically justified in the interplay of electrolytes and their manifestation in the ECG. We also compare the regression accuracy with that of traditional machine learning models, demonstrating superior performance of DNNs. Conclusion: Discretization can lead to good classification performance, but does not help solve the original problem of predicting continuous concentration levels. While probabilistic regression demonstrates potential practical usefulness, the uncertainty estimates are not particularly well-calibrated. Significance: Our study is a first step towards accurate and reliable ECG-based prediction of electrolyte concentration levels.
translated by 谷歌翻译